"komplexe Zahl" meaning in All languages combined

See komplexe Zahl on Wiktionary

Noun [Deutsch]

IPA: kɔmˈplɛksə ˈt͡saːl Audio: De-komplexe Zahl.ogg Forms: ℂ [symbol]
  1. Summe einer reellen Zahl und einer imaginären Zahl (Produkt der Multiplikation einer reellen Zahl mit der imaginären Einheit ⅈ): a+bⅈ (wobei a, b ∈ ℝ)
    Sense id: de-komplexe_Zahl-de-noun-uD361~Vj Topics: mathematics
  2. die Menge der komplexen Zahlen ([1]) Tags: plural-only
    Sense id: de-komplexe_Zahl-de-noun-WjBMOGua Topics: mathematics
The following are not (yet) sense-disambiguated
Hypernyms: Zahl, Menge Translations: complex number (Englisch), nombre complexe [masculine] (Französisch), комплексное число (kompleksnoe čislo) [neuter] (Russisch), komplext tal [neuter] (Schwedisch), komplexní číslo [neuter] (Tschechisch)

Inflected forms

{
  "categories": [
    {
      "kind": "other",
      "name": "Deutsch",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Grundformeintrag (Deutsch)",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Roter Audiolink",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Rückläufige Wörterliste (Deutsch)",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Rückläufige Wörterliste Grundformeintrag (Deutsch)",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Substantiv (Deutsch)",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Wiktionary:Audio-Datei",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Wortverbindung (Deutsch)",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Siehe auch",
      "orig": "siehe auch",
      "parents": [],
      "source": "w"
    }
  ],
  "forms": [
    {
      "form": "ℂ",
      "sense_index": "2",
      "tags": [
        "symbol"
      ]
    }
  ],
  "hypernyms": [
    {
      "sense_index": "1",
      "word": "Zahl"
    },
    {
      "sense_index": "2",
      "word": "Menge"
    }
  ],
  "hyphenation": "kom·ple·xe Zahl",
  "lang": "Deutsch",
  "lang_code": "de",
  "other_pos": [
    "phrase"
  ],
  "pos": "noun",
  "senses": [
    {
      "examples": [
        {
          "author": "Hans-Dieter Rinkens, Katja Krüger",
          "isbn": "978-3-658-28465-7",
          "pages": "105",
          "publisher": "Springer",
          "ref": "Hans-Dieter Rinkens, Katja Krüger: Die schönste Gleichung aller Zeiten. Von mathematischen Grundkenntnissen zur eulerschen Identität. Springer, 2020, ISBN 978-3-658-28465-7, Seite 105 (Zitiert nach Google Books)",
          "text": "„Die Basis kann dabei eine beliebige, von Null verschiedene komplexe Zahl sein.“",
          "title": "Die schönste Gleichung aller Zeiten",
          "title_complement": "Von mathematischen Grundkenntnissen zur eulerschen Identität",
          "url": "Zitiert nachGoogle Books",
          "year": "2020"
        }
      ],
      "glosses": [
        "Summe einer reellen Zahl und einer imaginären Zahl (Produkt der Multiplikation einer reellen Zahl mit der imaginären Einheit ⅈ): a+bⅈ (wobei a, b ∈ ℝ)"
      ],
      "id": "de-komplexe_Zahl-de-noun-uD361~Vj",
      "sense_index": "1",
      "topics": [
        "mathematics"
      ]
    },
    {
      "examples": [
        {
          "author": "Hans-Dieter Rinkens, Katja Krüger",
          "isbn": "978-3-658-28465-7",
          "pages": "146",
          "publisher": "Springer",
          "ref": "Hans-Dieter Rinkens, Katja Krüger: Die schönste Gleichung aller Zeiten. Von mathematischen Grundkenntnissen zur eulerschen Identität. Springer, 2020, ISBN 978-3-658-28465-7, Seite 146 (Zitiert nach Google Books)",
          "text": "„Die trigonometrischen Additionstheoreme haben uns später gute Dienste bei der Einführung der komplexen Zahlen geleistet.“",
          "title": "Die schönste Gleichung aller Zeiten",
          "title_complement": "Von mathematischen Grundkenntnissen zur eulerschen Identität",
          "url": "Zitiert nachGoogle Books",
          "year": "2020"
        }
      ],
      "glosses": [
        "die Menge der komplexen Zahlen ([1])"
      ],
      "id": "de-komplexe_Zahl-de-noun-WjBMOGua",
      "sense_index": "2",
      "tags": [
        "plural-only"
      ],
      "topics": [
        "mathematics"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "kɔmˈplɛksə ˈt͡saːl"
    },
    {
      "audio": "De-komplexe Zahl.ogg",
      "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/7/79/De-komplexe_Zahl.ogg/De-komplexe_Zahl.ogg.mp3",
      "ogg_url": "https://commons.wikimedia.org/wiki/Special:FilePath/De-komplexe Zahl.ogg"
    }
  ],
  "tags": [
    "feminine"
  ],
  "translations": [
    {
      "lang": "Englisch",
      "lang_code": "en",
      "sense_index": "1",
      "word": "complex number"
    },
    {
      "lang": "Französisch",
      "lang_code": "fr",
      "sense_index": "1",
      "tags": [
        "masculine"
      ],
      "word": "nombre complexe"
    },
    {
      "lang": "Russisch",
      "lang_code": "ru",
      "roman": "kompleksnoe čislo",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "комплексное число"
    },
    {
      "lang": "Schwedisch",
      "lang_code": "sv",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "komplext tal"
    },
    {
      "lang": "Tschechisch",
      "lang_code": "cs",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "komplexní číslo"
    }
  ],
  "word": "komplexe Zahl"
}
{
  "categories": [
    "Deutsch",
    "Grundformeintrag (Deutsch)",
    "Roter Audiolink",
    "Rückläufige Wörterliste (Deutsch)",
    "Rückläufige Wörterliste Grundformeintrag (Deutsch)",
    "Substantiv (Deutsch)",
    "Wiktionary:Audio-Datei",
    "Wortverbindung (Deutsch)",
    "siehe auch"
  ],
  "forms": [
    {
      "form": "ℂ",
      "sense_index": "2",
      "tags": [
        "symbol"
      ]
    }
  ],
  "hypernyms": [
    {
      "sense_index": "1",
      "word": "Zahl"
    },
    {
      "sense_index": "2",
      "word": "Menge"
    }
  ],
  "hyphenation": "kom·ple·xe Zahl",
  "lang": "Deutsch",
  "lang_code": "de",
  "other_pos": [
    "phrase"
  ],
  "pos": "noun",
  "senses": [
    {
      "examples": [
        {
          "author": "Hans-Dieter Rinkens, Katja Krüger",
          "isbn": "978-3-658-28465-7",
          "pages": "105",
          "publisher": "Springer",
          "ref": "Hans-Dieter Rinkens, Katja Krüger: Die schönste Gleichung aller Zeiten. Von mathematischen Grundkenntnissen zur eulerschen Identität. Springer, 2020, ISBN 978-3-658-28465-7, Seite 105 (Zitiert nach Google Books)",
          "text": "„Die Basis kann dabei eine beliebige, von Null verschiedene komplexe Zahl sein.“",
          "title": "Die schönste Gleichung aller Zeiten",
          "title_complement": "Von mathematischen Grundkenntnissen zur eulerschen Identität",
          "url": "Zitiert nachGoogle Books",
          "year": "2020"
        }
      ],
      "glosses": [
        "Summe einer reellen Zahl und einer imaginären Zahl (Produkt der Multiplikation einer reellen Zahl mit der imaginären Einheit ⅈ): a+bⅈ (wobei a, b ∈ ℝ)"
      ],
      "sense_index": "1",
      "topics": [
        "mathematics"
      ]
    },
    {
      "examples": [
        {
          "author": "Hans-Dieter Rinkens, Katja Krüger",
          "isbn": "978-3-658-28465-7",
          "pages": "146",
          "publisher": "Springer",
          "ref": "Hans-Dieter Rinkens, Katja Krüger: Die schönste Gleichung aller Zeiten. Von mathematischen Grundkenntnissen zur eulerschen Identität. Springer, 2020, ISBN 978-3-658-28465-7, Seite 146 (Zitiert nach Google Books)",
          "text": "„Die trigonometrischen Additionstheoreme haben uns später gute Dienste bei der Einführung der komplexen Zahlen geleistet.“",
          "title": "Die schönste Gleichung aller Zeiten",
          "title_complement": "Von mathematischen Grundkenntnissen zur eulerschen Identität",
          "url": "Zitiert nachGoogle Books",
          "year": "2020"
        }
      ],
      "glosses": [
        "die Menge der komplexen Zahlen ([1])"
      ],
      "sense_index": "2",
      "tags": [
        "plural-only"
      ],
      "topics": [
        "mathematics"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "kɔmˈplɛksə ˈt͡saːl"
    },
    {
      "audio": "De-komplexe Zahl.ogg",
      "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/7/79/De-komplexe_Zahl.ogg/De-komplexe_Zahl.ogg.mp3",
      "ogg_url": "https://commons.wikimedia.org/wiki/Special:FilePath/De-komplexe Zahl.ogg"
    }
  ],
  "tags": [
    "feminine"
  ],
  "translations": [
    {
      "lang": "Englisch",
      "lang_code": "en",
      "sense_index": "1",
      "word": "complex number"
    },
    {
      "lang": "Französisch",
      "lang_code": "fr",
      "sense_index": "1",
      "tags": [
        "masculine"
      ],
      "word": "nombre complexe"
    },
    {
      "lang": "Russisch",
      "lang_code": "ru",
      "roman": "kompleksnoe čislo",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "комплексное число"
    },
    {
      "lang": "Schwedisch",
      "lang_code": "sv",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "komplext tal"
    },
    {
      "lang": "Tschechisch",
      "lang_code": "cs",
      "sense_index": "1",
      "tags": [
        "neuter"
      ],
      "word": "komplexní číslo"
    }
  ],
  "word": "komplexe Zahl"
}

Download raw JSONL data for komplexe Zahl meaning in All languages combined (3.1kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-14 from the dewiktionary dump dated 2025-01-01 using wiktextract (b941637 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.